实数的概念,实数是什么举例
实数的概念,实数是什么举例?
实数由有理数和无理数组成,其中无理数就是无限不循环小数,有理数就包括整数和分数。
有理数例子:如整数(31)、分数(-1/3)
无理数例子:如无线不循环小数(π、3.1565……)
本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
实数的性质:
1、基本运算:
实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
有理数范围内的运算律、运算法则在实数范围内仍适用:
交换律:a+b=b+a , ab=ba
结合律:(a+b)+c=a+(b+c)
分配律:a(b+c)=ab+ac
2.实数的相反数:
实数的相反数的意义和有理数的相反数的意义相同。
实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。
实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
3.实数的绝对值:
实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;
一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是 :|a|
①a为正数时,|a|=a(不变)
②a为0时, |a|=0
③a为负数时,|a|= a(为a的相反数)
(任何数的绝对值都大于或等于0,因为距离没有负的。)
自然数和实数的区别?
实数是连续的稠密的,自然数是离散的,实数是完备的,自然数不完备。
1、自然数不仅是表示量的程度的符号,也是表示量的有序规律的符号。也就是说,自然数是一种符号,它可以表达具有相同属性的事物的程度和秩序规律,并且具有表达事物的程度和秩序规律的三种功能。
2、自然数集有加法和乘法运算。两个自然数相加或相乘的结果仍然是一个自然数,也可以用作减法或除法。然而,减法和除法的结果可能并不都是自然数,因此减法和除法运算在自然数集中并不总是有效的。
3、实数是有理数和无理数的通称。从数学上讲,实数定义为与数轴上的点对应的数。实数可以直观地视为有限小数和无限小数,它们可以“填满”数轴。但它不能仅仅通过列举的方式来描述实数的整体。实数和虚数一起构成一个复数。
0是实数吗?
0是实数。
实数包括有理数和无理数,而零是有理数。所以零是实数。0是个特殊的偶数。根据奇数和偶数的定义:若某数是2的倍数,它就是偶数(双数),可表示为2n;若非,它就是奇数(单数),可表示为2n+1(n为整数),即奇数(单数)除以二的余数是一,0=2*0,故0是偶数。
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
实数基本定理?
实数系的基本定理也称实数系的完备性定理、实数系的连续性定理,这些定理分别是确界存在定理、单调有界定理、有限覆盖定理、聚点定理、致密性定理、闭区间套定理和柯西收敛准则,共7个定理,。
一、上(下)确界原理
非空有上(下)界数集必有上(下)确界。
二、单调有界定理
单调有界数列必有极限。具体来说:
单调增(减)有上(下)界数列必收敛。
三、闭区间套定理(柯西-康托尔定理)
对于任何闭区间套,必存在属于所有闭区间的公共点。若区间长度趋于零,则该点是唯一公共点。
四、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理)
闭区间上的任意开覆盖,必有有限子覆盖。或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。
五、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理)
有界无限点集必有聚点。或者说:每个无穷有界集至少有一个极限点。
六、有界闭区间的序列紧性(致密性定理)
有界数列必有收敛子列。
七、完备性(柯西收敛准则)
数列收敛的充要条件是其为柯西列。或者说:柯西列必收敛,收敛数列必为柯西列。
实数包含复数吗?
1,实数不包含复数,实数和虚数共同构成复数。
2,实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。
3,复数形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。