微积分基本定理,微积分基本定理是怎样推导出来的
微积分基本定理,微积分基本定理是怎样推导出来的?
微积分基本定理推导过程:原函数,导数和微分之间的关系:从a到e是连续的,F(x)是f(x)一个原函数,从a到b增加了F'(x)*dx,从b到c增加了F'(x)*dx,这时从a到c就增加了F'(x)*dx+F'(x)*dx,以此类推,那么函数f(x)的积分就是原函数F(x)的上限e对应的F(e)减去下限a对应的F(a)的线段长度
为什么微积分基本定理揭示了积分和黎曼积分的本质联系?
定积分的正式名称是黎曼积分,详见黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。
实际上,定积分的上下限就是区间的两个端点a、b。 我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢?
定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 若f'(x)=f(x) 那么∫f(x) dx (上限a下限b)=f(a)-f(b) 但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。
虽然这种写法是可以的,但习惯上常把被积函数的自变量改成别的字母如t,这样意义就非常清楚了: φ(x)= x(上限)∫a(下限)f(t)dt 牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。 正这个理论揭示了积分与黎曼积分本质的联系,可见其在微积分学乃至整个高等数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
动能定理微分推导?
动能定理的推导
对于匀加速直线运动有:
由牛顿第二运动定律得
F=ma
①
匀加速直线运动规律有:
s=((v2)^2-(v1)^2)/(2a)
②
①×②得:
Fs=(1/2)m(v2)^2-(1/2)m(v1)^2
外力做功W=Fs,记Ek1=(1/2)m(v1)^2,Ek2=(1/2)m(v2)^2
即
W=Ek2-Ek1=△Ek
对于非匀加速直线运动:
进行无线细分成n段,于是每段都可看成是匀加速直线运动(微分思想)
对于每段运动有:
W1=Ek1-Ek0
W2=Ek2-Ek1
……
Wn=Ekn-Ekn-1
将上式全部相加得
∑W=Ekn-Ek0=△Ek
连续有界性定理?
函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定联系的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。在极限理论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值与最小值定理、介值定理、零点定理和一致连续性定理。其中,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,有多种方法可以证明此定理。比如可以利用闭区间套定理、确界定理、单调有界定理和柯西收敛准等。我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理。在本文中,我们分别讨论一元连续函数和二元连续函数的有界性定理,分别给出一种证明方法
微积分最难公式?
积分[-1,1] (f(x)) dx 的数值积分计算问题,其中的有种很好且常用的方法,叫做高斯积分。一般的近似计算公式形如:
积分[-1,1] (f(x)) dx = 求和[i=1, n] (Ai * f(xi))
其中 Ai 为系数,例如梯形法中梯形的面积。通过选取一些点x1, ...., xn 来近似计算积分。高斯积分的意思就是说,要找最少的点来达到最高的精度。本来 f 只要是在[-1,1]上的可积都可以求,但是如果你点选得好,对多少阶以下的多项式 f 近似计算公式可能根本就是恒成立的。高斯积分就是要使,取更少的点,使得对更高阶的多项式 f 是精确成立的。
定理 x0, ..., xn 是 n+1 阶勒让德多项式 q(x) 的零点,则公式
积分[-1,1] (f(x)) dx = 求和[i=0,n](Ai * f(xi))
对 f 为任意2n+1阶多项式是精确成立的。
勒让德多项式(通过计算正交多项式计算出来的)如下:
p0 (x) = 1;p1 (x) = x;p2 (x) = x^2 - 1/3;p3 (x) = x^3 - 3/5x